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Introduction
The 2012 Bordetella pertussis outbreak was the largest experi-
enced in the United States since 1955.1 Totaling 48 277 
reported cases (15.4/100 000 incidence rate), pertussis caused 
significant pneumonia and 20 deaths2 and estimated health 
care costs of $57 million.3 Although the outbreak peaked in 
2012, pertussis has continued to be a major public health con-
cern with increasing rates reported by the Centers for Disease 
Control and Prevention (CDC) through 2014. This trend is 
often attributed to use of the safer but less effective acellular 
vaccine (diphtheria and tetanus toxoids and acellular pertussis 
[DTaP]) for children.4 Infants, children, and adolescents are 
most at risk of infection,5 with an overall incidence rate of 
44.8/100 000 among those less than 20 years old; pertussis-
related disease adversely affects school attendance, with a high 

likelihood of spread among students in school settings.6 Given 
lower vaccine efficacy,7 the current public health challenge is to 
identify ways to minimize morbidity and mortality by maxi-
mizing vaccine coverage. Understanding both demographic 
and geographic factors affecting pertussis epidemiology may 
help to optimize coverage.

Immunizations are typically highly effective ways to combat 
disease spread8; spatial analytical approaches may enhance 
their interruption of pertussis disease spread by identifying 
higher risk areas (eg, lower up-to-date [UTD] rates) for tar-
geted interventions.9 By geolocating vaccine-preventable dis-
ease (eg, incident pertussis cases) occurrence, spatial distribution 
analysis has identified disease clustering.10 Similarly, by access-
ing data from immunization information systems to geolocate 
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individuals and vaccine UTD rates, or the percent of the popu-
lation adhering to age-specific vaccine recommendations, areas 
of lower population vaccine coverage may be identified.11,12 
These analyses may permit more granular assessments across a 
jurisdiction, enabling local health departments to actively tar-
get interventions.13

Effective prevention plans should target high-risk individu-
als or high transmission areas.14 Near-real-time spatial analysis 
might inform targeted vaccine outreach and assess campaign 
impact to optimize the intervention. However, the quality of 
immunization and population data available may result in 
overcounting due to high patient mobility or undercounting 
due to limited provider participation in immunization report-
ing. More scarcely populated geographic areas may artificially 
increase rates with wide confidence intervals. Lower and upper 
outlier rates may obscure correlations between disease inci-
dence and UTD rates. Spatial analytical techniques (eg, 
weighting, smoothing, and cluster detection) may temper the 
impact of outliers. With open-source software, health depart-
ments can potentially identify areas where vaccine-preventable 
disease incidence rates are high and where vaccine UTD rates 
are low. Spatial analyses measure disease clustering, monitor 
prevention measure impact, identify outliers, and provide 
smoothing techniques to understand and visualize trends. This 
study was undertaken to evaluate the relation between vaccine 
coverage and a vaccine-preventable disease in an urban envi-
ronment. We sought to explore a method to combine geospa-
tial analysis of immunization UTD rates with confirmed 
pertussis disease reports using an immunization information 
system and a communicable disease registry, respectively.

Methods
Disease incidence rates

A retrospective, observational study was conducted using 
reported B pertussis cases among residents of the City and 
County of Denver in 2012 who were less than 19 years of age 
(total population: 634 905, <19 years of age: 149 830). Incident 
B pertussis cases were reported to the Colorado Electronic 
Disease Reporting System (CEDRS). Only cases meeting 
CDC’s definition for confirmed pertussis cases15 and reported to 
CEDRS were included. Suspect and probable cases were 
excluded from analysis. Reported case residence was used to 
geolocate the pertussis case to a census tract (CT) using ArcGIS 
software (CAA version 10.2.2; ESRI, Redlands, CA, USA). 
Population-based incidence rates were calculated using American 
Community Survey (ACS) 5-year estimated 2009-2013 denom-
inators. Incidence rates were aggregated to the CT level.

Immunization UTD rates

Up-to-date rates were calculated using 2012 data from the 
Colorado Immunization Information System (CIIS), the offi-
cial, voluntary, centralized, statewide immunization information 
system. Population estimates were derived from ACS data. 

Colorado Immunization Information System, maintained by the 
Colorado Department of Public Health and Environment, 
includes Web-based tools that provide record consolidation, 
eliminate redundant information, manage vaccine administra-
tion consistent with CDC schedules, and generate patient-
specific immunization reports. Demographic (ie, date of birth 
and gender) and immunization history (ie, CVX code and con-
traindications)16,17 data were obtained from CIIS for individuals 
less than 19 years of age who had any vaccine in the previous 5 
years (to mitigate the impact of counting individuals who moved 
out of the county). Individuals with a pertussis vaccination con-
tradiction were excluded from analysis. An algorithm for calcu-
lating UTD status for each individual, based on the Advisory 
Committee on Immunization Practices recommendations,18 was 
developed in SAS (version 9.3; Cary, NC, USA) counting DTaP 
and Tdap (Tetanus toxoid, Reduced diphtheria, and Acellular 
pertussis) immunizations. Minimum and maximum ages, mini-
mum interval periods between doses, and catch-up schedules 
were included in the assessment; doses were eliminated, if earlier 
than minimum age or interval from last vaccine.

In addition, residential addresses from CIIS were assigned 
longitude and latitude coordinates using Centrus19 software, 
spatially joined to the corresponding CT and aggregated to the 
CT level (N = 144). Penetration rates, or the percent of the 
population represented in CIIS, were calculated to estimate 
coverage of individuals less than 19 years of age when com-
pared with ACS denominator data.

Age-adjusted incidence and UTD rates

Age-adjusted and age-unadjusted CT rates were performed to 
assess correlations between disease incidence and UTD rates 
per 100 000 population. Crude rates were calculated to the CT 
level. Crude incidence and UTD rates were adjusted for ages 0 
to 4, 5 to 9, 10 to 14, and 15 to 18 using US Standard 2012 
population ACS 5-year estimate proportion to adjust per 100 
000 population for the same age groups per CT.

Spatial analysis

Pearson, Spearman, and Kendall tests for correlation were per-
formed to assess associations between CT disease incidence 
rates and CT UTD immunization rates. Summarized CT-level 
data were imported into GeoDa version 0.920 (Windows 7, 
32-bit version) for an exploratory spatial analysis of disease 
incidence and pertussis immunization UTD rates. Box plots, 
box maps (hinge = 1.5 or 1.5 times the interquartile range), and 
histograms identified lower and upper outliers’ values and loca-
tion, as well as statistical measurements. Adjustments (ie, 
smoothing and weighting) of upper and lower outlying rates 
were used to mitigate rate variability associated with popula-
tion differences (eg, small denominators in some CT) or rela-
tively low CT-specific pertussis incidence rates.

To minimize variance instability of both outlier disease inci-
dence and immunization UTD rates, all smoothing methods 
available in GeoDa were tested20,21: (1) empirical Bayes, (2) 
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spatial empirical Bayes, and (3) spatial rate. Each was com-
bined with available spatial weighting types: (1) queen conti-
guity (QC), (2) rook contiguity (RC), (3) k-nearest neighbor 
(KN), and (4) distance weights (DW).22 Weighting techniques 
in combination with smoothing methods produced different 
effects on the data set and analytical results. Rate estimations 
varied based on whether a CT (1) shared a common border or 
common vertices with or (2) had greater proximity to another 
CT. Weighting and smoothing methods were combined to 
optimally produce the fewest outliers for the data set.

Global autocorrelation was defined by Moran’s I statistic 
and visualized by Moran’s scatterplot for the entire data set, 
whereas local autocorrelation focused on finding local clusters 
by applying Local Moran’s I to each CT in relation to its geo-
graphic neighbors. By plotting smoothed rates versus lagged 
variables,20,23 the regression line slope generated Moran’s I. 
Lagged variables are the weighted average of the rate values for 
neighboring CTs.

Appropriate weighting and smoothing methods were 
selected to yield the fewest outliers and most dense neighbor-
hood clusters. Local autocorrelation was determined using the 
local indicators of spatial association (LISA) for adjusted inci-
dence and UTD rates. In addition, the Local Gi and Gi* statis-
tics were run using the highest available number of permutations 
and normality tests for Gi and Gi*24 to verify results from 
LISA.23 Permutations and randomization in global autocorre-
lation permit a user to reject (or not) the null hypothesis that 
the data are randomly distributed. Permutations when used in 
LISA and Gi and Gi* statistics refine the significance levels.

Gi and Gi* are statistics of global and local spatial associa-
tions, respectively. Measured using a z score, high (positive) 
and low (negative) values for area of interest assess the ran-
domness of the data and whether the null hypothesis should be 
due to positive or negative clustering. In the Gi, the individual 
CT rates are not included, whereas in the Gi*, individual CT 
rates are included in their own rate calculation. The Gi evalu-
ates the general trend of the rates, whereas the Gi* evaluates 
each CT using its surrounding CTs and compares the local 
area with the total study area.25

The areas of greatest interest were those where higher dis-
ease incidence rates were associated with lower immunization 
UTD rates. The analysis initially sought to identify the inter-
section of higher incidence cluster(s) and higher UTD clusters 
to eliminate those intersecting areas, leaving CTs with higher 
disease incidence rates and lower UTD rates, where an inter-
vention might be targeted.

Scoring census tracts for pertussis immunization 
UTD rates

Because 3 weighting types were selected for assessing UTD 
rates, a simple scoring system was developed to identify CT 
which might be targeted for outreach. “High-high” was defined 
as a CT with a high UTD immunization rate neighboring on 
at least one other CT with a high UTD rate. The inverse, or 

“low-low,” indicates a CT with low UTD immunization rate 
near another CT with a low UTD rate, indicating potential 
areas of interest. As multiple weighting techniques assessed 
UTD rates, the combined score counted the number of times a 
tract was identified as part of a high-high cluster based on 3 
UTD smoothed rate methods (ie, empirical Bayes, spatial 
empirical Bayes, and spatial rate) combined with weighting 
methods (ie, QC, RC, and DW) with the Gi and Gi* for ran-
domness and normality tests against the incidence cluster CTs. 
The total possible score ranged from 0 to 12. To avoid being 
restrictive (selecting a lower middle point), the maximum score 
was set to be 7 achieved by 2 CTs. It was determined that a 
midpoint score (ie, greater than or equal to 4) made a CT part 
of a UTD high-high cluster.

Results
Among Denver residents under 19 years of age, 175 confirmed 
pertussis cases (87 men, 88 women) were reported in 2012 for 
a pertussis disease incidence of 116.8/100 000. The range of 
disease incidence by CT was 0 to 983/100 000 residents (Figure 
1A). The CIIS data set included 134 672 individuals less than 
19 years old (men: 68 402; women: 66 195; unknown: 75), rep-
resenting 90% of the estimated 2012 population. Of these indi-
viduals, 103 496 (77%) were determined to be UTD for 
pertussis immunization. Up-to-date raw rates by CT ranged 
from 4% to 179% (Figure 1B). In some CTs, UTD rates 
exceeded 100% due to people whose address was out of date in 
CIIS or due to in-migration.

Pearson, Spearman, and Kendall tests for correlation 
between individual CT pertussis UTD rate and CT disease 
incidence rates were performed. Correlation tests were con-
ducted for both unadjusted and age-adjusted rates. Results for 
both methods were essentially the same. No further age adjust-
ment was used. Statistically significant (P < .05) positive cor-
relations of 0.23 and 0.17 were observed for Spearman and 
Kendall, respectively, and a nonsignificant (P = .13) positive 
correlation of 0.13 was observed for the Pearson test. Figure 2 
shows no correlation between incidence and UTD rates for the 
Pearson test.

As outliers were observed with potential to affect correla-
tion coefficients (eg, incorrectly estimating the presence or 
absence of an association), further exploration used spatial ana-
lytical methods to better assess correlation.

Raw rate analyses did not yield the expected correlation of 
high incidence rates with low UTD rates, and subsequent steps 
used weighting and smoothing techniques to analyze and 
adjust the data spatially. Box plots and box maps showed no 
lower and 5 upper outliers for incidence rates and their geo-
graphic location (Figures 3A and 4A, respectively). Box plot 
analysis revealed pertussis immunization UTD rates with 4 
lower and 6 upper outliers (Figure 3B). Their geospatial loca-
tions are described in Figure 4B. Table 1 includes population 
rates for pertussis disease incidence and immunization UTD. 
Spatial rate smoothing was selected out of available options (ie, 
empirical Bayes, spatial empirical Bayes, and spatial rate) for 
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both disease incidence and immunization UTD rates. Spatial 
weighting types selected were QC for incidence rates and QC, 
RC, and KN for UTD rates. Multiple weighting types were 
selected for the UTD rates as all 3 weight types produced no 
outliers. Table 2 shows the resulting outliers after applying each 
method combination.

Pertussis disease incidence rates
Global autocorrelation. Moran’s I scatterplots for spatial rate 
smoothed and QC-weighted pertussis disease incidence rates 
indicated moderate and strong positive autocorrelation, respec-
tively, on the high-high and low-low quadrants, having a 
Moran’s I = 0.665. Moran’s I scatterplot is divided into 4 
quadrants: the upper right quadrant represents high values sur-
rounded by other high values, the upper left quadrant repre-
sents low values surrounded by high values, the lower left 
quadrant represents low values surrounded by low values, and 
the lower right quadrant represents high values surrounded by 
low values. A positive slope indicated positive spatial autocor-
relation where high values were surrounded or clustered with 
high values and low values were surrounded with low values; 
inversely, a negative slope indicated a negative autocorrelation 
(see Figure 5). To test the significance of Moran’s I, the ran-
domization tests were selected using 99 999 permutations. 
Results of the simulated Moran’s I randomization test showed 

no measure larger than 0.665 (pseudo P < .0001), indicating 
spatial global autocorrelation for disease incidence.

Local autocorrelation. LISA outcomes and Gi and Gi* for dis-
ease incidence rates smoothed by spatial rate method and QC 
weighting (Figure 6A and B) under the randomization test had 
a pseudo P value of ⩽.0001. The cluster map in Figure 6A 
shows 1 predominant positive (high-high), autocorrelation 
clusters with 46 tracts in dark red. Local Gi and Gi* statistics 
produced 1 high-high cluster of 51 CTs Figure 6B.

Under the normality option, the outcomes of clusters and sig-
nificance were more restrictive. Gi and Gi* statistics identified 1 
cluster of 2 positive high-high tracts (pseudo P = .05, for Gi and 
Gi*); this cluster from the normality test seems to be the core of 
the larger cluster identified by LISA under the permutations test.

Pertussis immunization UTD rates
Global autocorrelation. Global autocorrelation for immuniza-
tion UTD was analyzed using spatial rate smoothing with QC, 
RC, and DW weighting. In each case, the null hypothesis of 
global randomness was rejected, indicating the presence of 
clusters. The resulting Moran’s I for QC was 0.675, for RC was 
0.523, and for DW was 0.411. For each, the simulated Moran’s 
I was smaller than the actual Moran’s I, indicating potential 
global autocorrelation.

Figure 1. Bordetella pertussis incidence and pertussis immunization up-to-date (UTD) unweighted rates, Denver, CO, 2012: (A) raw incidence rate per 

100 000 and (B) raw UTD rate (%).
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Local autocorrelation spatial rate smoothed rate and weighting 
methodologies. Local autocorrelation was tested using Moran’s 
I, LISA, Gi, and Gi* for the spatially smoothed UTD rate in 
separate combinations with QC, KN, and RC weighting. 
Moran’s I of 0.675 rejected the null hypothesis; UTD rates 
with spatial smoothing and QC weighting were evenly dis-
persed geographically, indicating local clustering. Local simu-
lated spatial patterns consisted of 1 high-high cluster. The 
cluster was formed by 46 tracts (pseudo P ⩽ .01). Local Gi and 
Gi* statistics under a randomization test generated identical 
cluster maps as LISA with the same 46 tracts (pseudo P ⩽ .01).

Spatially smoothed UTD rates with RC weighting showed 
a Moran’s I of 0.523 rejecting the null hypothesis and indicat-
ing the presence of a cluster. The LISA high cluster was formed 
by 34 tracts (pseudo P ⩽ .05). Local Gi and Gi* statistics under 
randomization test generated a nearly identical cluster map to 
LISA with 36 tracts (pseudo P ⩽ .01, for both).

Spatially smoothed immunization UTD rates with DW 
weighting showed a Moran’s I of 0.627 rejecting the null 
hypothesis and indicating the presence of a cluster. Local spatial 
patterns consisting of 2 clusters formed by 21 and 9 tracts were 
identical to LISA and Gi and Gi* maps (pseudo P ⩽ .05). 
Normality test resulted in some differences between Gi and Gi*. 
Gi* identified a statistically significant (P ⩽ .05) cluster formed 
by 2 tracts. Gi did not identify those same tracts as a cluster and 
categorized them as not statistically significant (P > .05).

Potentially significant clusters with the QC, RC, and DW 
weighting for the spatially smoothed UTD weighting were 
calculated using the scoring system; results are displayed in 
Figure 7 for each CT.

The score is determined by adding the number of times a 
CT appeared in any Gi and Gi* high-high cluster. Maximum 
possible CT score was 12. Gi and Gi* inclusions were counted 
only when they corresponded to high-high UTD LISA clus-
ters generated using the spatial rate smoothing method com-
bined with QC, RC, and KN spatial weighting types.

Spatial comparison of pertussis incidence and 
immunization UTD rates

Potential intervention sites were determined by overlapping 
high pertussis incidence clusters with low UTD rate clusters. 
Local autocorrelation analysis identified a positive, higher per-
tussis incidence CT cluster (N = 51) using the LISA, Gi, and 
Gi* techniques (Figure 6A and B). The map containing the 
high-incidence pertussis cluster was compared with the map 
containing the 39 CT with UTD rates scoring ⩾4 or midpoint 
of the scoring range. Avoiding being restrictive, the maximum 
score was set to be 7 achieved by 2 CTs. It was determined that 
a midpoint score (ie, greater than or equal to 4) made a CT part 
of a UTD high-high cluster. A group (N = 21) of CTs included 
in the high disease incidence cluster yet excluded from the 

Figure 2. Standardized correlation plot for unweighted Bordetella pertussis disease incidence rate and immunization up-to-date rate (hinge: 1.5), Denver, 

CO, 2012.
Pearson correlation coefficient = 0.126; P = .133.
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Figure 3. Exploratory box plot geospatial analysis of unweighted Bordetella pertussis incidence and pertussis immunization up-to-date (UTD) rates, 

Denver, CO, 2012: (A) incidence rate per 100 000 and (B) UTD rates (%).
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high immunization UTD scoring group were identified as 
potential intervention sites (Figure 8).

Figure 8 represents detection and correction of anomalies in 
the correlation between pertussis incidence and vaccination 
rates. Smoothing increased the reliability of the correlation 
estimates by reducing the negative effect of outliers. By per-
forming autocorrelation analysis, a statistically robust relation-
ship estimate between rates was detected with high-high 
clusters for pertussis incidence and UTD rates using autocor-
relation tools (LISA, Gi, and Gi*) in combination with appro-
priate smoothing techniques.

Comparing the correlation coefficients between raw and 
smothered disease incidence and immunization, correlation 
coefficients for incidence and UTD rates (spatial QC, spa-
tial RC, and spatial KN) rose significantly (0.57, 0.49, and 
0.41, respectively) for the Pearson test (P < .0001, Figures 
9A to C); Spearman test (0.50, 0.44, 0.36, respectively, P < 
.0001); and Kendall test (0.36, 0.32, and 0.24, respectively, 
P < .0001).

Using the same process but with raw pertussis incidence and 
vaccination UTD rates (Figure 10) shows 7 CTs with inci-
dence rates above the 75th percentile and UTD rates below the 
25th percentile. Only 1 of these CTs in Figure 10 is included in 

Figure 8 for intervention. Figure 10 also shows a pattern of 
random distribution and particularly 1 CT (upper right corner 
of the map) which has 1 confirmed pertussis case with very low 
population count.

Discussion
A simple comparison of disease incidence and UTD rates for 
pertussis immunization showed a correlation contrary to 
expectations due to the influence of extreme low or high outlier 
values. Spatial analysis offered an alternative method to over-
come real-life deficiencies when using immunization data. 
Census tracts of interest (N = 21) were identified, where higher 
disease rates and lower immunization UTD rates suggest loca-
tion for potential public health intervention. Another outcome 
was identifying high immunization UTD clusters. These areas 
represent successful immunization efforts where lessons may 
be learned.12

Geospatial analytical tools (eg, rate smoothing, weight-
ing, and global and local autocorrelations) helped analyze 
data from 2 relatively common data sources (ie, communica-
ble disease reports and immunization information systems) 
available in many state and local health departments. Such 
information can be presented to decision makers for 

Figure 4. Exploratory (unweighted) box map geospatial analysis of Bordetella pertussis disease incidence and pertussis immunization up-to-date (UTD), 

Denver, CO, 2012: (A) incidence rate hinge = 1.5 and (B) UTD rate hinge = 1.5.
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Table 1. Bordetella pertussis incidence and pertussis immunization UTD rates for individuals less than 19 years of age, Denver, CO, 2009-2013.

INFORMATION SOURCES

 POPULATIONa IMMUNIzATIONSb DISEASE OCCURRENCEc

 TOTAL % TOTAL % TOTAL %

Total 149 830 100 134 672 100 175 100

 Male 76 116 51 68 402 51 87 50

 Female 73 714 49 66 195 49 88 50

 Unknown 75 0  

Pertussis UTD

 Yes 103 496 77 — —

  Male 52 501 77 — —

  Female 50 963 77 — —

  Unknown 32 0  

 No 31 176 23 — —

  Male 15 901 23 — —

  Female 15 232 23 — —

  Unknown 43 0  

Abbreviation: UTD, up-to-date.
aAmerican Community Survey 5-year estimates.
bColorado Immunization Information System.
cConfirmed cases—Colorado Electronic Disease Reporting System, Colorado Department of Public Health and Environment: 174 cases geocoded.

Table 2. Census tract outlier analysis by smoothing method for Bordetella pertussis incidence and pertussis immunization UTD rates, Denver, CO, 
2012.

SMOOTHINg METHOD OUTLIERS OUTLIERS BY SMOOTHINg/wEIgHTINg METHOD

 QUEEN 
CONTIgUITY

ROOK 
CONTIgUITY

K-NEAREST 
NEIgHBOR

DISTANCE 
wEIgHT

Bordetella 
pertussis 
incidence

Empirical Bayes Upper 6 — — — —

 Lower 1 — — — —

Spatial empirical Bayes Upper — 11 6 9 10

 Lower — 0 0 0 0

Spatial rate Upper — 0 5 11 0

 Lower — 0 0 0 1

Pertussis 
immunization 
UTD

Empirical Bayes Upper 5 — — — —

 Lower 4 — — — —

Spatial empirical Bayes Upper — 5 5 5 5

 Lower — 3 3 3 3

Spatial rate Upper — 0 0 0 1

 Lower — 1 1 0 8

Abbreviation: UTD, up-to-date.
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geographically informed intervention strategies. To our 
knowledge, the concept of scoring immunization UTD rates 
for CTs to locate clusters using different smoothing and 
weighting tools was novel for determining potential immu-
nization intervention strategies. This type of hotspot data 
visualization was facilitated by freely available, open-source 
software.20

This clustering approach alleviated the adverse impact of 
several outlier rates on correlations. In effect, cluster analysis 
mitigated the problem of small denominators for some CT 
where outlier rates are more likely. Alternatively, population 
inflation due to in-migration or deflation due to having moved 
or gone elsewhere (MOGE) may distort rate calculations, 
resulting in overestimated or underestimated rates. Rate 
smoothing stabilizes artificial rate variations from one area to 
another: adjusting higher and lower rates toward the mean 
global and local rate accounts for population differences 
between CTs.

Using the immunization information system and census 
estimates, the Denver County CT-level penetration rates for 
Colorado Immunization Information System were calculated. 
Using 2009-2013 ACS estimates as a denominator, the result-
ing penetration rate of CIIS to census information was 90%. 
With at least 1 CT having a penetration rate of 179%, 

Figure 5. Spatial rate smoothed Bordetella pertussis incidence rate with 

queen contiguity weights Moran’s I scatterplot (hinge: 1.5), Denver, CO, 2012.
global autocorrelation spatial rate smoothed with QC weighting.

Figure 6. Local autocorrelation spatial rate smoothed Bordetella pertussis incidence weighting, rates with queen contiguity map, Denver, CO, 2012: (A) 

local indicators of spatial association cluster map and (B) gi and gi* cluster map.
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in-migration for some communities has been significant. The 
US Census Bureau has estimated rapid growth (~15%) in 
Denver population since 2010.26

Limitations

This method assumed a representative and accurately geo-
coded set of immunization information system data. Some 
Denver County residents received vaccines from providers who 
did not report vaccinations to CIIS. Immunization history for 
patients seeing those providers would have been incomplete, 
thereby creating inaccurate UTD rates. “MOGE”27 updates 
were typically not available for this analysis; thus, if a patient 
leaves the county or state or transfers to a provider not report-
ing to the immunization information system, CT-level pene-
tration rate estimates would be inflated. This likely affected all 
CTs randomly. We attempted to mitigate the impact of 
“MOGE” and unknown updated addresses on penetration rate 
calculations through our restriction to at least 1 immunization 
during the past 5 years.

Conclusions
Using efficient, readily available, and cost-effective spatial anal-
ysis software, public health departments have an opportunity 
to geographically inform and target immunization outreach 
programs. While already a robust source of data, even stronger 
provider participation and sharing immunization records with 
CIIS will help improve accuracy of geospatial UTD estimates. 
Using smoothing techniques, spatial exploratory data analysis, 
hotspot identification, and significance tests, we combined 
findings into a summary score. Summary geospatial scoring 

Figure 7. Map of combined spatial weight scoringa for pertussis  

vaccine up-to-date (UTD) rates by census tract, Denver,  

CO, 2012.
aScore determination: the score is determined by adding the number of times 
a census tract (CT) appeared in any gi and gi* high-high cluster. Maximum 
possible CT score was 12. gi and gi* inclusions were counted only when they 
corresponded to high-high UTD LISA clusters generated using the spatial 
rate smoothing method combined with queen contiguity, rook contiguity, and 
k-nearest neighbor spatial weighting types.

Figure 8. Intersection of census tracts with high Bordetella pertussis incidence and low pertussis vaccine up-to-date immunization rates using spatial 

rate smoothing and queen contiguity weighting, Denver, CO, 2012.
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increased the identification of potential targets of high-risk CT 
for optimal use of limited public health resources and may per-
mit cost savings to public health departments. Geospatial 

analytical skills and methods used in this study are replicable; 
they should be applicable to other public health data sets beyond 
vaccine-preventable disease incidence and vaccination status.

Figure 9. Pearson correlation plots between Bordetella pertussis incidence and pertussis vaccine up-to-date immunization smoothed rates using spatial 

rate smoothing method, Denver, CO, 2012: (A) QC smoothed incidence rate and QC smoothed UTD rate, (B) QC smoothed incidence rate and RC 

smoothed UTD rate, and (C) QC smoothed incidence rate and KN smoothed UTD rate.
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